Cross Validation in Compressive Sensing and its Application of OMP-CV Algorithm
نویسندگان
چکیده
Compressive sensing (CS) is a data acquisition technique that measures sparse or compressible signals at a sampling rate lower than their Nyquist rate. Results show that sparse signals can be reconstructed using greedy algorithms, often requiring prior knowledge such as the signal sparsity or the noise level. As a substitute to prior knowledge, cross validation (CV), a statistical method that examines whether a model overfits its data, has been proposed to determine the stopping condition of greedy algorithms. This paper first analyzes cross validation in a general compressive sensing framework and developed general cross validation techniques which could be used to understand CV-based sparse recovery algorithms. Furthermore, we provide theoretical analysis for OMP-CV, a cross validation modification of orthogonal matching pursuit, which has very good sparse recovery performance. Finally, numerical experiments are given to validate our theoretical results and investigate the behaviors of OMP-CV.
منابع مشابه
Sensing Dictionary Construction for Orthogonal Matching Pursuit Algorithm in Compressive Sensing Sensing Dictionary Construction for Orthogonal Matching Pursuit Algorithm in Compressive Sensing
In compressive sensing, the fundamental problem is to reconstruct sparse signal from its nonadaptive insufficient linear measurement. Besides sparse signal reconstruction algorithms, measurement matrix or measurement dictionary plays an important part in sparse signal recovery. Orthogonal Matching Pursuit (OMP) algorithm, which is widely used in compressive sensing, is especially affected by me...
متن کاملReconstruction of Compressive Sensing Signal using Orthogonal Matching Pursuit Algorithm
This paper represents the reconstruction of sampled signal in CS by using OMP algorithm. We have used the concept of compressive sensing for sub Nyquist sampling of sparse signal. Compressive sensing reconstruction methods have complex algorithms of l1 optimisation to reconstruct a signal sampled at sub nyquist rate. But out of those algorithm OMP algorithm is fast and computationally efficient...
متن کاملWavelet Compressive Sampling Signal Reconstruction Using Upside-Down Tree Structure
This paper suggests an upside-down tree-based orthogonal matching pursuit UDT-OMP compressive sampling signal reconstruction method in wavelet domain. An upside-down tree for the wavelet coefficients of signal is constructed, and an improved version of orthogonal matching pursuit is presented. The proposed algorithm reconstructs compressive sampling signal by exploiting the upside-down tree str...
متن کاملSparse Signals Reconstruction via Adaptive Iterative Greedy Algorithm
Compressive sensing(CS) is an emerging research field that has applications in signal processing, error correction, medical imaging, seismology, and many more other areas. CS promises to efficiently reconstruct a sparse signal vector via a much smaller number of linear measurements than its dimension. In order to improve CS reconstruction performance, this paper present a novel reconstruction g...
متن کاملDistributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology
Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1602.06373 شماره
صفحات -
تاریخ انتشار 2016